Dade′s Conjecture for Symmetrical Groups

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alperin’s Conjecture for Algebraic Groups

We prove analogues for reductive algebraic groups of some results for finite groups due to Knörr and Robinson from ‘Some remarks on a conjecture of Alperin’, J. London Math. Soc (2) 39 (1989), 48–60, which play a central rôle in their reformulation of Alperin’s conjecture for finite groups.

متن کامل

From Acyclic Groups to the Bass Conjecture for Amenable Groups

We prove that the Bost Conjecture on the `-assembly map for countable discrete groups implies the Bass Conjecture. It follows that all amenable groups satisfy the Bass Conjecture.

متن کامل

Zassenhaus Conjecture for cyclic-by-abelian groups

Zassenhaus Conjecture for torsion units states that every augmentation one torsion unit of the integral group ring of a finite group G is conjugate to an element of G in the units of the rational group algebra QG. This conjecture has been proved for nilpotent groups, metacyclic groups and some other families of groups. It has been also proved for some special groups. We prove the conjecture for...

متن کامل

The Σ-conjecture for Metabelian Groups

The Σ3-conjecture for metabelian groups is proved in the split extension case.

متن کامل

The Baum-connes Conjecture for Hyperbolic Groups

The Baum-Connes conjecture states that, for a discrete group G, the K-homology groups of the classifying space for proper G-action is isomorphic to the K-groups of the reduced group C-algebra of G [3, 2]. A positive answer to the Baum-Connes conjecture would provide a complete solution to the problem of computing higher indices of elliptic operators on compact manifolds. The rational injectivit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 1995

ISSN: 0021-8693

DOI: 10.1006/jabr.1995.1258